3 research outputs found

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations---restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that, in cases where the combined complexity is of relevance, approaching CTL model checking by parallelism cannot be expected to result in any significant speedup. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL+, and ECTL+

    EXPTIME tableaux for the coalgebraic Āµ-Calculus

    Get PDF
    The coalgebraic approach to modal logic provides a uniform framework that captures the semantics of a large class of structurally different modal logics, including e.g. graded and probabilistic modal logics and coalition logic. In this paper, we introduce the coalgebraic Mu-calculus, an extension of the general (coalgebraic) framework with fixpoint operators. Our main results are completeness of the associated tableau calculus and EXPTIME decidability. Technically, this is achieved by reducing satisfiability to the existence of non-wellfounded tableaux, which is in turn equivalent to the existence of winning strategies in parity games. Our results are parametric in the underlying class of models and yield, as concrete applications, previously unknown complexity bounds for the probabilistic Mu-calculus and for an extension of coalition logic with fixpoints
    corecore